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correct answers because the same, tensorially incorrect, designation is
applied to the flux density vectors B.

Interpreting the circuit for the machine with the field on the rotor, the

field-coil axes fixed to the field structure oscillate with it. Incremental
currents in this direct axis are coupled to the increments in armature free
axes through the mutual inductance, shown on the circuit. The field
increments Ai* are then interacting with absolute changes 6i” and 6i® on
the armature. ' -

The incremental quantities shown on the hunting circuit can be used with
the values of flux and current obtained from the steady-state circuit
derived by the same technique,® to give all of the components of positive
and negative damping and synchronising torques at any hunting frequency.

CHAPTER VII

Circuit Models of Field Equations

7.1 Introduction

In Chapter III the concept of a tensor was introduced from a geo-
metrical viewpoint. This was defined as the aggregate of a set of com-
ponents, the whole making up the tensor, which transforms (singular)
according to the very simple laws given in Section 3.2. It was seen that the
components are all acting at a point in a geometrical or configuration
space. In order to speak of the same tensor or vector at a different point
in space one must resort to parallel displacement, which involves the metric
tensor and covariant differentiation as shown in Appendix IV. In applying
the laws and concepts of tensor analysis to electrical machines Kron
adopted a radically different approach, based on Synge’s ‘Geometry of
Dynamics’.“® This involves a dynamical metric L,; which gives invariant
electrical or mechanical energy under transformation. There are therefore
two different types of metric tensor, the purely geometrical, giving in-
variant distance, parallel displacement and so on, and the mechanical
metric, derived from this, giving invariant energy and power.

In the application of tensors to field problems and to the equivalent
circuits satisfying field equations it is necessary to revert to the geometrical
metric. The equivalent network is then derived in general stationary
curvilinear (usually orthogonal) co-ordinates, in which form the choice of
co-ordinates does not affect the physical description of the field. The
main advantage of Kron’s circuit models is that quantities on the network
represent line, surface and volume integrals of the field components, so
that the whole space can be considered to be filled. Waves then propagate
across the skeleton structure throughout the given region. The concept
of integration is an essential part of the tensor model and Stokes’
theorem, Ampere’s law, Green’s theorem, etc., are satisfied at every
point.“9

Before examining Kron’s field circuit-models it is well to remember that
similar circuit analogues have been in use for decades. Reference 50 lists
about eleven hundred publications on applications of equivalent networks,
electrolytic tanks, resistance paper, etc., to various types of.fields. A
typical node of an electrical network is shown in figure 7.1. This satisfies
the difference equations®V
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which may be compared with the difference form of Laplace’s equation
in two dimensions

V=0
ﬁ+ﬁ=¢l+¢z+¢a+¢4—4¢o_o (1.2)
ox* ' 0y? k2 =

Fic. 7.1. Electrical network analogue (one node).

This analogue can therefore be used to give solutions of Laplace’s equation,
when the appropriate boundary conditions are applied. The equations
and equivalent network can readily be extended to three dimensions and
expressed in polar, cylindrical and other co-ordinates. In such analogues
the dependent variables are read from the network branches and no con-
cepts of line, surface or volume integration are explicitly used.

An equation of a more general type is that for heat conduction in an
exothermic medium, 62 ’

DV2f — ch—f = f(6) (1.3)

where D is a diffusion coefficient, 6 is the temperature, c is the specific
heat and p is the density of the material. In this case the transient nature
of the equation leads to the addition of shunt capacitors on the network.
The non-linear stored-energy function must be generated separately and
injected at the proper place and time on the network. Figure 7.2 shows the
type of analogue circuit required, with the necessary scanning and injection

equipment.
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Kron’s models thus differ from conventional analogue networks in two
respects, namely (@) the whole space is filled, by integration, and (b) the
topology of the network does not change with transformation of the
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FiG. 7.2. Flow diagram of network, switches and function generation.

co-ordinate system, in other words, the network derived from the invariant
form of the field equations is itself invariant.

7.2 Tensor densities

In setting up circuit models for field equations, two points of view must
be combined. The field equations describe conditions at a point in space.
In order to relate these point-conditions to circuit parameters, line, surface
and volume integration of the field quantities must be used. Also, physical
quantities at a point imply the use of densities, and tensor-densities must
be introduced. Eddington®® has described the situation thus . . . “Two
different kinds of quantities are used in physics, intensity, or condition at
a point expressed by tensors; and something, so much per unit, expressed
by tensor density.”

To develop the idea of tensor density, the first step is to define the
elements of length, area and volume. All of these can be expressed in terms
of the metric tensor

8up = 2, .8 (7.4

The displacement of a point, or element of length, derived in Section 3.2
is given by .

ds® = g, du*du® (7.5)

Using the system of unitary vectors a, as in Chapter III the elements of
area and volume are derived as follows.
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The element of area bounded by the co-ordinate curves u?u?
ds, = |dsy X dsj|
= |a, X ag|dutdi® (7.6)
= [V(a, X 23) . (ay X a,)]d2du

and since
(AXB).(CxD)=(A.C)B.D)— (A.D)B.C)
ds, = [V(ay - 3,08, - a5) — (25 - ag)(ay . aphdel®
= [Vgngs — galditdi® = Vg dd® (1.7)

where

8o 823
B3z Sa3

with similar expressions for dS, and dS,
The volume element

dr = ds, . dsy X ds; = (a; . a, X a,)duldh®cd® (7.8

As in the previous case the right-hand side can be expanded and expressed
in terms of scalar products giving

dr=+ é: dul du® du? (7.9)

g=

where
g= Igocﬂ l

In this form the elements of length, area and volume are invariant. In
genera] co-ordinates, volume is given by

V= f f f Vg i du? du® (7.10)
The mass of a medium of density p is theréfore v
m = f f f o Vg dut di dud ., (7.11)

This association with volume integration is the reason for the name

‘tensor density’. It is usual to associate the term V. ‘g with the vector or
tensor function. This is then the quantity to be integrated with respect to

the elements du*, du? and du®. Thus pV/ Eis called a scalar density. A ten-
sor density is a quantity which transforms according to the tensor laws

but which, in addition, is multiplied by \/E For example, if
A = Vg% = \/ganCeCE (7.12)
then 4*# is a tensor density.
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Now consider, following Eddington, the integration of a tensor over a
given area. The integral

f A%/ gdS

implies the summation of tensors at different points, and these have
different coefficients of transformation. If the area becomes infinitesimally
small the tensors approach a single point and the law of transformation of
the whole integral approaches that of a tensor. Using tensor densities one
can therefore integrate over infinitesimal areas. However, if the quantity
under the integral sign is an absolute invariant (involving the given vector
or tensor field), then each element of area or volume contributes to the
integral. All elements will have the same coefficient of transformation
whatever the vector location, and integration can be carried out over finite
areas. For this reason, in tensor field theory, the integral form of Ampere’s
law and Faraday’s law and the theorems of Gauss, Green and Stokes are
written in invariant form.

The next consideration is therefore the invariant form of the vector
quantities, gradient, divergence and curl.

7.3 Field equations

In Section 3.2 a vector F was expressed in physical components with
respect to unit tangent direction vectors i and also with respect to the
unitary tangent vectors a.

In Cartesian co-ordinates y*y?y® (= x,y,2)

Gradient, V¢ = f()?_;{:c i (k,1,2,3) (7.13)
a &
Divergence, V.F= i, (7.14)
oy"
Curl, P PO A
o o0 0
Fl FZ F3
2 62 2
Laplacian Vi = ¢ + ¢ i (7.16)

@ @7 @
In curvilinear co-ordinates the invariant form of these expressions can be
obtained, using covariant or contravariant components, by writing the
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equivalent expressions in terms of covariant derivatives, where, for
example,

. O0X* 0X« o
Y = 6u7' = W + FﬂyXﬂ (7.17)
0X, 0X,
Xa,y = gu—y = a—uy ~ Fg.‘,Xﬂ (718)
The gradient now becomes
op .
Ve = 8%3 a? (7.19)

The divergence is obtained by expanding

of*  of* . 8
S %'i- g r (7.20)

Expanding the second term on the right-hand side,

8an
T, = g% 55;—3 (7.21)
Now, if
g= lgaﬁ,
g s 08 .
o = G2 (1.22)
where G°" is the cofactor of g,
G
Also, gt =—
g
or G* = gog _ (7.23)
Thus
ag - 8gﬁ'n
5h = (878 o
1 og 0 -
o 1% _ 9
=155 = (e Ve (724)

and

v opo Y1 aver

e Vg o (7.25)

The expression for the curl is obtained by a similar process using covariant
components, namely,
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VXF=-2L2 28—\ = . __ (7.26)

L o S5

The curl of a vector field can also be obtained by applying a generalised
form of the skew-symmetric matrix whose components are +1. In three
dimensional Cartesian co-ordinates these e-symbols are defined by®4

eq=+1,-1,0 (7.27)
depending on whether
(i) an even or odd permutation will restore the sequence 1, 2, 3, or,
(ii) two indices are equal.
From this definition .
e*e,p, = O (7.28)

By
The generalised d-symbol has properties similar to those of the e-symbols
with respect to permutations of upper and lower indices. If any two
symbols are equal then that component is zero.

The three-dimensional e-matrix will have its components located at the
positions shown in figure 7.3. Any completely skew-symmetric matrix
can have only two values for all its components, that is

Aoy = Aegy,
where Ajgs = +4, Ayzp = —A4, Ay33 =0, etc.

I2A

(7.29)
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In this notation a determinant is expressed

|} = a = e;paiajal (7.30)

and a vector product
D = A x B = ¢"%4,B,
for example Dl = €184, B; + 1324, B, (7.31)
= A,B; — A;B, )

(This leads later on to the required invariant form of the curl of a vector.)

Further properties of the e-symbols are as follows. Referring to equation
(7.30) it follows that

i '
€., asdy, = |ajle,g, (7.32)

and
e a5ay = —ealahds (7.33)
The e-symbols are not invariant under transformation of co-ordinates.

Consider a holonomic, reversible transformation from, say, a Cartesian
system y™ to a curvilinear system u”

m_ "
Cr== (7.34)
dy™ = Crdw
The inverse of this transformation is
ou®
Cl = —
"= (7.35)
where
y" = flnd)
W = f)
The Jacobian is defined by
J= i
= By (7.36)
and
1o
J | ow
Now from equation (7.32), putting a’ = C?
owr .
ay—m sy = CamCuCE CY (7.37)
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au'y —1
Cupy = ‘ ay—’" eknmcgcgc;" (7.38)
ou
and e = P eknmCceCch ey (7.39)
Yy

An object transforming in this way is called a relative tensor of weight
W (the power to which the determinant is raised). Thus e* and ez, are
relative tensors of weight +1 and —1 respectively. In terms of the metric
tensor,

o ow
ouwr
and | gmn | = &' = E)yim
It therefore follows that the quantities
Ernm = \/Eleknm (740)
1
gk = —— eknm (7.41)
Vg

transform as absolute tensors. The covariant quantity eg,,, is a tensor
density. The contravariant form is called a tensor capacity. In three-
dimensional orthogonal co-ordinates, with the usual notation,

AN 2 3
1| A
8up = 2 he (7.42)
3 12

\/8—11 = b, \/52-2 = hy, \/8_3:; = hy
812 =28p =8xn =0
Vg = hhyhy (7.43)
In the general three-dimensional completely skew-symmetric matrix
the single value 4 is not an invariant and
A4=J4
also \/E — J\/g

A

ofy?
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The curl of a vector field can now be expressed with respect to the system du" 0
a” Ampere’s law, f - = ffD”nv das — Jfl”nde =0 (759
| (curl F)Y = G = —e¥Pefy = — —1: evief (7.44) dw”
: \/g ; Faraday’s law, f —ds + — ffBVn as=0 (7.55)
‘ and Stokes’ theorem becomes ,’
J' f Gon, dS = f £ ds (7.45) } In these equations the elements of area and volume are
=|f,— ) ) ‘
_ 182 &
where #,, is the normal unitary vector. ! 5 = g: g:z i chi®, ete.
Each side of equation (7.45) is now an absolute invariant and the } .
integration difficulties mentioned in Section 7.2 do not arise. | dr = Vg dut di? du?
[ The Laplaman in absolute form, is obtained by equating the contra- i
I! variant vector in equation (7.25) to the gradient of a scalar field, : 7.4 Maxwell’s equations(34,55,56)
s O In setting up the equivalent circuit model for the electromagnetic field,
: fr=g Y] (7.46) ‘ the components of the vector fields are first expressed in covariant or
E | contravariant form as shown in Section 7.3. Once the covariant or
E Summarising, the invariant forms of the expressions used in field equa- | contravariant nature of one of the vectors has been decided then the field
F tions are equations determine the nature of all other components. The contra-
i Gradient _ 0 variant or covariant components are then related to the electrical circuit
. s ¢ = P (7.47) equations for open and closed meshes, namely,
i .
| . —7
1 Divergence, V.F= L (f (fVe 2) (7.48) closed meshes v, = Z,!
? \/ au« open meshes I* = YV (7.56)
i al a* 2 ! It will be found, however, that some covariant quantities, having contra-
| Curl VxF = 1 J 0 2 ? variant curl components, are represented on the network by contravariant
> X ¥ = 7§ 5 R o (7.49) quantities. Consider the equations of the electromagnetic field,
' B
ho o Sy curl E = — m
, 9 o |
Laplacian, Vip = — — ( br\/g —) (7.50)
, s 5 . D
‘/ Ou o curlH—J—l—E—
)
Stokes’ theorem ffG“n as = J‘ jf,— ds (751 { divB=0
: divD=p
Green’s theorem fu ff§ dr = fff”nde (7 52) : B = uH (7.57)

, ; D=c¢E
Gauss’ theorem ffDVn,, das = fff pdr (7.53) | J E
=0
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If covariant components of the electric field vector, E, be taken, the
index notation gives the following components of the remaining terms in
the equations,

E covariant

Curl E contravariant (equation 7.44)

B contravariant (equation 7.57)

H covariant (equation 7.57)

Curl H contravariant (equation 7.44)

J and D contravariant (equation 7.57)

i, € and o doubly contravariant (equation 7.57)

The physical components of the vectors are taken as a starting point.
These are, with respect to the unit direction vectors,

Ey = Egit + E)i? 4+ Eg)i (7.58)

In orthogonal co-ordinate systems the transformation matrix from these
to covariant or contravariant components is

G\« 1 2 3
1 &

CP =2 hy, (7.59)

3 hy

Quantities associated with line integrals are then transformed by

E,= CPEq (7.60)
for example E, = h Ey, etc. (7.61a)
And similarly H, = h H,, etc. o (7.61b)

Quantities associated with surface or volume integrals are transformed
by two steps,

(1) a transformation as above to covariant or contravariant compo-
nents,

(ii) these components are multiplied by \/E to express them as vector
or tensor densities. _

When they are so expressed, the Vg coefficients in the elements of area
or volume have been transferred to the new density terms and the elements
of area or volume in the invariant equations are then (Au? Aw®) and
(Au! Au? Avd), etc. The laws of transformation are as follows,
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Contravariant vector
B = VgB* = Vgg*B, = Vgg¥CP B, (7.62)
For example,
1
BY = hyhohy — By = hyhy By, etc. (7.63)
(hy) :
Contravariant tensors, (p.e and o)
o = Vgpt = Vg5 = Vggu (7.64)
(6% is the square, unit matrix)
For example,
1 Loy tels o (7.65)
u =h1h2h3(—h-1)—2,u-——hl—-y,ec. .

In curvilinear co-ordinates, an element of length
ds, = Vgy, dil, etc., (7.66)
therefore the voltage interval along a branch of the network will be
Eqyds, = Egyh At = E, Ayt (7.67)

The flux threading a mesh containing a field of flux density B, will be
given by
By dsy dsy = Bqyhy AvPhy Ar®

= B(l)h2h3 Au? Ad

= BY Au® A (7.68)
Thus the vector or tensor denmsity components can be integrated with
respect to the elements Aut, Au?, Au? of the co-ordinate system.

The equations in orthogonal curvilinear co-ordinates can now be
written with vector or tensor density components.

0k, 0E, 9B
and two similar equations.
OH; OH, + oDv
T ot

and two similar equations.
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oBY  0B¥  9B¥
ou ou? o3

oD¥ 9D¥ 9D¥ | , -
3u1_+ 3u2+3_u3=P o =Vep)

=0

JYV = og'WE, etc.
DY = E,, etc.
BY = yVH, | etc.

. (7.69)

Kron’s equivalent circuit is shown in figure 7.4. Each circuit element of
this network is a lumped equivalent of an element of space with distributed

Au’

7
:Uz, €D AuAul
u

y JAuRe?)
¢ HoAu?

22' 4 TA 3D
L= 425

FiG. 7.4. Equivalent circuit for Maxwell’s equations (one block).
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parameters. This ‘concentration’ of currents, voltages and fluxes is shown
in figure 7.5. The voltages across the capacitors round a mesh in the
u'y® plane add to give the line integral

AE, Aut — AE; Ay® (7.70)
and
8E1 3) 1 (aEi" 1) 3 — 9 27 A 4,1
(% Aud) At — P At} Au® = —a—[(B Aut Aud)
or
OE; 3E3) Aa 0 o A1 A3
(8u3 ) At A® = 5 (BY Aut Au®) (7.71)

The covariant magnetic vector H, is represented by current, which is
contravariant. However, the curl of H is contravariant and this is given by

Rerri) [
1,1:>_:4_ o 2 lAu3 - -
At Toadss -

T

[ZR X

(DM A0 (VH; Al= AH, A?

I
_ e [
o N,
I

Fic. 7.5. Simulation of blocks by “‘concentrated” currents.

the residual current flowing out from the magnetic meshes into the
capacitor-resistor circuits. In figure 7.5 the current in the lumped RC con-
necting circuit is the integral of J1' and p D' over the area Au? AuB, namely
(JY + pDY)Au? AP (7.72)
On this circuit the sheets of current flowing into the junction 4 give
residuals
AH; Au® — AH, Ay? = (JY + pDY)Au? Au?
or
0H, 3H2)
— — — ) A A = (JY AwA® . (173
(3 2) pipus = (v + poiya .73

corresponding to Ampere’s law.
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Similar analysis shows that the divergence equations are also satisfied.

The operation of the circuit model depends on the ideal transformers
coupling the diagonal magnetic circuits as shown. On synthesising a
network from a set of operational equations it is often found that the
currents in the meshes must be constrained by ideal transformers. The
transformers included by Kron®® in the circuit of figure 7.4 perform two
main functions. ]

(1) They eliminate currents that would circulate in the smaller magnetic
coupling-meshes at the corners of the elementary cubes and constrain
the network currents to flow in the larger meshes only. The currents in
these are always associated with curl H. Similarly the voltage circulation
round these meshes is always equated to the terms p(uH). The network
therefore propagates electromagnetic waves and not simply currents and
voltages.

(i) Maxwell’s equations are satisfied even in the presence of an arbi-

trary scalar potential field ¢. In terms of a magnetic vector potential A,
where

B = curl A webers/sq. metre (7.74)
J
and A=y f — dr webers/metre (7.75)
vol. ¥
oB 0
= —— = — 7.
curl E 5 5 (curl A) (7.76)
0A
E=— & (7.77)

In the presence of a scalar potential field

a .
E= —grad¢ ~ 51; (7.78)
0
curl E = — curl grad ¢ — % (curl A) (7.79)
and since curl grad ¢ = 0
the equation
JB
E=—2
curl o

is again satisfied.
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With the transformers coupled diagonally across the larger meshes,
voltage corresponding to a source-free potential field may b‘e impressed
diametrically across the corner magnetic meshes. These will cause no
currents to circulate in these smaller meshes and the ideal coupling means
that the voltage gradients will adjust themselves across the whole network
so that they cause no additional currents in the larger meshes either. Tl_ae
network will therefore propagate waves as if the scalar potential field did
not exist.

The whole model is seen to be a three-dimensional orthogonal network
energised in both closed and open meshes. It can be divided in this way
as shown in figure 7.6 to give the transverse electric (TE) and transverse
magnetic (TM) modes of oscillation. These two-dimensional networks are
in fact those usually derived separately by difference techniques. In three
dimensions this division corresponds to the two four-dimensional tensor
equations usually associated with relativistic electrodynamics, 11,53

OF,  OF, OF,
% — —2 =0 7.80a
ow” ou* + ouP ( )

1
V=a

where #* = 4!, 12, u3, u?

[gc'ﬁ (V' —a H“ﬁ)J = S= (7.80b)

and wt=ict (i=+'—1and cis the velocity of light)

1 2 3 4

1 B _ B | ih

(hy)? (hy)? ¢ \/g

) B 5 |in

(h3)? (h)? cVg

Fo= (7.81)

5 | _ 5 PE

(he)? (h)? Vg
A_iE|_iE|_iE
¢y cVg g
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1 2 3 4
’ 1 B | _&|_ D
N N . \/g \/g (}11)2
— R 2L RITH | 2l — is_ il_ —ic Dy
v . : \/g \/g (h2)2
é E § H = (782)
& xi ot : o 2| b ie D
Y] — ~ 9
3 N Vg | Vg (k)
. A Lo Dy Ds
% % BR | (p? (ha)?
1 2 3 4
It \: 1 _(hl)z
g | 2 —(h)?
: Ay = (7.83)
3 —(hy)?
| . .
1 2 3 4
I } ~
S ; | & Ty A
; = @y | W | G | F 759

. The elements of these matrices are obtained from those defined by equa-
—% ' tions (7.69), to conform with the invariant equations. They give the same
i results. For example,

W = 78:’ _ _ ’ (7.85)

13
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1 9, — 1 8 (. B
—_— \/— 12) — P ( —3>
v 5 (Ve STt 8 \ T Pahs Vs
1 8H,
= 7; TR (7.86)

and with the first row of matrix (7.82) equation (7.80b) gives

1 0 —_— i — 0 R '
| L2 AT — o1 | —
'\/—_a[auz(‘/ aHY) + = (V —aH ) + 5 (V—al )] St
(7.87)
which becomes
OH., OH. oDY

On the model the closed meshes satisfy the covariant equation (7.80a) and
the open meshes satisfy the contravariant equation (7.80b). The network
as a whole combines the two sets into one orthogonal network satisfying
the complete four-dimensional space-time formulation of the electro-
magnetic equations.

7.5 Network Analogues

When Kron had established the tensor-density technique which enabled
him to draw equivalent circuits for the electromagnetic field, the same

3

L
i

7 -
< 2
2 b
A 1 %
3NN L3 . 3P A3 i
o Au? s s 3
AA—
% dﬂ’Au’AB %
. Au?
; '.VL
63' I3 bé <

% %

FiG. 7.7. Equivalent circuit for the diffusion equation,
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reasoning was then applied to circuit models for other types of partial
differential equations.®”-4" In these circuits, transient and wave pheno-
mena are represented by electromagnetic waves. They are wholly analogue
circuits. Some examples will now be considered.

The equivalent circuit for the diffusion equation‘®

divdgrad¢ =5 : (7.89)

is shown in figure 7.7. In many cases

2
b= bla—‘f + byb + by (7.90)

The terms of equation (7.89) in tensor density form are given by equations
(7.60) to (7.64). In this equation,

d is doubly contravariant
b is a scalar
¢ is a scalar

grad ¢ is a covariant vector.
On the network the voltage difference along Aul is

%4
— Aut
our
Now,
current = conductance X voltage

bt ld 3,

17 A 42 = g
JYARAR = d AL G

(7.91)
Jyhohs Au2 A = (dn' ﬁ(é) Av? AP
(68141 ot
= |:d(1) hz—hs' % hl} AuzAuz"
Y U
0
= l_d(l) '%] h2h3 AuZAua (792)

where dWY =dq —
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The components of the divergence, over the intervals Aut, Au?, Aud are
summed, to give

5+ o (7 5) + 2 (= )
11/ - 33/ 1 2
[a 1(d B +3u2 aa) Y wa\ T ) | B di b

= bhyhohy At A2 Aup
= b At Aa Ao - (7.93)

which satisfies simultaneously, Kirchhoff’s laws and the diffusion equation.

An example involving the curl of a vector field is that of solenoidal fluid
flow. In this form of stream flow, examined here without sources, there
exists a stream function ¢ which has the form of a vector potential. The
flow is described by the following equations,

divpy =0
~curly=T
py = curl $ (7.94)
curl (p1 curl Y) =
divecurlp =0

In these equations, p is the fluid density, v is a velocity vector field. T is
called the vorticity and it may have the form

r—q2¥

7+ dy + dy (1.95)

Again the equations decide the covariant or contravariant nature of the
terms, once one of them has been fixed, thus

v covariant (voltage)

J» covariant.(current)

Curl v contravariant (mesh voltage)
p doubly contravariant (conductivity)
p~* doubly covariant (resistivity)

T’ contravariant (mesh voltage)

On the network shown in figure 7.8, v is the branch voltage drop, curl ¢
is the residual current flowing from the magnetic meshes into the branches
and

curl ' = p'v’ (7.96)
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The contravariant components of conductivity are, from equation 7.64

hy
pY =p—— fe (7.97)
hl
The branch conductance is
A2 AP
7.98
AL (7.98)
u3
L
uf
S NMN———
—_ \,
\\
»/ -7
—w——— /
Il// N /
/!
o | 3 PR /
\Vi 1 v,z VS,/
valy? y /e
e it
Ya(dy) prauLy
FiG. 7.8. Equivalent circuit for solenoidal fluid flow (one block).
The branch resistivity is
-1 7.99
P11 (o)~ h h3 ( )
and the branch resistance is
i (7.100)
P e Au, ‘

In the integrated form, since one component of curl ¢’ is the contra-
variant vector G, the integrated branch current is G Au? Au3. Thus

2
GY A2 Avé = oV Au A“3 o] At
= JV A2 Au?® the branch current.
. (7.101)
Also, pleurlg =v (7.102)
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for example
’ ul ’ ’
P11 W GV A2 Aw® = v] Aud (7.103)
the branch voltage.
Around a mesh, the voltage v is equal to

curl (ptcurl ) =T ' (7.104)

The divergence equations are also satisfied in accordance with Kirchhoff’s
laws.

In studies of theoretical elasticity, tensor analysis has always been widely
used.®® The equations can be conveniently handled in index notation and
the concepts can be expressed in an elegant mathematical form.

There are three sets of equations to be simultaneously satisfied,

(i) the stress equilibrium equations,
(i) the stress-strain relationship,

(iii) the compatibility relationship.

The last of these ensures that the displacements due to any given stress
distribution will be single valued—a condition automatically satisfied
by the electrical analogue network. In generalised co-ordinates, covariant
differential equations are used. To set up the equivalent circuit it is first
decided that (say) the force vector f* is to be represented by current
(contravariant), and displacements, by voltage (covariant). The index
notation then gives the nature of other quantities, for example, the stress
becomes a doubly contravariant tensor-density®® and

1 hahs
g = '71“ 01)1)s etc. (7105)

(i) The equilibrium equations can now be expressed in terms of dis-
placement s
6a“ﬂ’ D% .
— +pf* =pg¥ = 31‘2 (7.106)

where, again p’ is the material density (= V/ grp). This equation involves the
covariant derivative of a tensor density and as shown in Appendix IV
8¢'*F  do’eb rs '
S ol + (7.107)
where

I

’V=

Ao (f& 4+ OB _ 9&)
2 owP " ow  our
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Equation (7.107) expands to give a set of simultaneous equations. For
example, in two dimensions,

dg'? g™ ol

+ ]_"110-’11 + I‘% 12 +

+ T50"8 4 Thp0'2

Sub — out o (7.108)
where
1 ok
=gy, = h—l E{i’ etc.
28
6; 7 = similar expression.
U
The tensor-density equilibrium-equation in three dimensions thus becomes
Sity €q q
do’'lt 0o’z po'13 1 ok 2 ohy 2 oh
g1 G'12 ~ 71 i3
Pt T e e
h? Oh, e hy Ohg 53 "y ,18231
TR’ T yam’ TP =P (109

and another two similar equations.
(i) In the second set the stresses (o) are given in terms of strains (e) by

0y = A6 + 2ue;;

0;5 = 2ue,; (7.110)
where 4 and u are Lame’s constants and the dilatation
§=en + ep+ ess (7.111)

From these equations

on = Qu + Dey + Ly, + Aegg

05 = 2pey,, (7.112)

etc.
The relation between strain and displacement is given by

€ = 3(s:5+ 55,9 (7.113)

where the comma denotes covariant differentiation. In cylindrical co-
ordinates ut4%(r,0) for example,

0s. 0s
en =% (9u11 — Ihs; — Ths, + Ew 11 — Ths, — T‘ilsz) ==

— asl + éf% — 2_S%
=\ T H T A . (7.114)

os;

os.
—_ 2 1
e22—3u + uls,
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In this co-ordinate system the stress tensor-densities, in terms of dis-
placements can therefore be written,

~0s, Ads,

e (o — Ay Sy A 55

¢ @n )r3r+r30+lsr

P05 1O 2

M R R (7.115)
Ads, 2u+Adsy 2u+ 2

09 _ 2 O5r 986

° r or rd 30+ o

The equations in Cartesian and curvilinear co-ordinates, together with the
corresponding circuits have been given by Kron®® and Soroka.®

o AYyAz
] Ix\T \*
o.;:yAyAz
and L -
o‘.;AxAz__:\gb d Y 1 AN —_—
A
- A Zx
%yAxAZ__) 9 \‘. —_—

@ (%)
Fig. 7.10
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Investigation of the practical application has been carried out by Carter!¢?
and Gross.®

In Cartesian co-ordinates (x,,z), with displacements , v, w, the equa-
tions have the form

0 dv 0
U“=(2,u+7»)5;l+l( 2 _w)

5}-)+32

aw=(2u+z)g—;+x(3_w+a—")

Jz = Ox
azz=(2u+z)a—w+ﬂ(€5‘+@)
o ox " (7.116)
Orl/z—o-zy—#(?.v__i_a_‘.v) .
P\ T oy

o wn (aw + au)

oTEoTEs ox 0Oz

o . du Ov

o = ¥ =y é}; + o

The equivalent circuit for the case of two-dimensional plane stress is
shown in figure 7.9. The mutual coupling indicated can be represented
for any given frequency of oscillation by the bridge circuit shown in
figures 7.10a and 7.10b. The small oscillation circuit therefore becomes
as in figure 7.11 and similarly for curvilinear co-ordinates. The para-
meters for figure 7.9 are shown in table VI.

TaBLE VI
Symbol Admittance
Ay A
a Qu + 2=
Ax
Ax A
b Qu+ 4 z
Ay
d Az
u Az Ax
& Ay
AyAz
/
1 M Ax
k 1Az
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FiG. 7.12
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In three dimensions the network has the form shown in figure 7.12.
The general stress equilibrium equations can be written in terms of the
displacements. Ina homogeneous isotropic medium these have the form(®4)

0%

af 2 —_
A+ o+ uVs+E=p= (7.117)

A more general form of this equation is®")
32
grad (A + 2u)divs ~curl pcurls +f=p 51—2 (7.118)

It is seen that in equation (7.118), in equivalent circuit terminology,

curl s is a mesh voltage

4 is an admittance

4 curl s is a current

curl u curl s is a residual current, etc.

The equations (7.117) and (7.118) satisfy Kirchhoff’s second law. The net-
works for curvilinear co-ordinates are given in detail by Kron, Soroka,
Carter and Gross.

The circuit shown in figure 7.7 has been applied by Kron to the nuclear
reactor diffusion equation.®® The equation describing the rate of change
of neutron density in a reactor is derived from the fundamental neutron
balance equation‘®®)

.0
production — leakage — absorption = g (7.119)

When the neutron diffusion coefficient D is independent of position this

becomes

S+ DV% — ¢ = % (7.120)

where S is a source term, X is the total macroscopic neutron absorption
cross section, and ¢ is the neutron flux (nv). More generally,

o
divDgrad — S + § = 5 (7.121)
and in the steady state on/dt = 0
The steady-state equation is clearly satisfied by a circuit ‘of resist-

ances of the form of figure 7.7 with the appropriate parameters and
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impressed -values, for example, the diffusion coefficient is a doubly
contravariant tensor density

hoh

DY = h13 Dy
=Vg 2 (7.122)
and S'=vg$

The circuit has been extended by Kron, to five dimensions, to. include
multiple energy groups and time variations.

AprPENDIX I

Conditions of Integrability

The expression
Adx 4+ Bdy 4+ Cdz =0

can be integrated only if certain relationships hold among the coefficients.
To show this, suppose the expression to have an integral

fGyz) =k

On integration this will give

3fd + fdy+afdz=0
dy oz
and
of of _ of _
Z'x—aA, a_-y"“'aB: —B—Z—ac
Hence
a _ *f _ ?f _ K/}
5}@1 )‘M‘%_Z("B)
0 0
Z(aB) — 5)—}(aC) =0
OB - oa oC da
a 32 Bg; a-é; aV 0
or
OB 3C) da da
Similarly,



